## GENERAL PRINCIPLES FOR ASYMPTOTIC CALCULATION OF THE INTERACTION BETWEEN CHARGES AND SPATIALLY MODULATED MAGNETIC FIELDS

## R. I. Kovtun

Zhurnal Prikladnoi Mekhaniki i Teknicheskoi Fiziki, Vol. 8, No. 1, pp. 139-140, 1967

Here we consider the general case of the Krylov-Bogolyubov method applied to the motion of charges in a relatively strong homogeneous magnetic field together with a certain small perturbation, whose form is not specified but which may be dependent on all three spatial coordinates. We use a cylindrical coordinate system ( $\mathbf{r}, \varphi, \mathbf{z}$ ), with the z-axis parallel to the strong field. It is shown that the problem may be reduced to solution of a quasi-harmonic equation whose coefficients are dependent on two slowly varying parameters, whose variations are described by two independent first-order equations. The three equations form a system to which we may apply the usual methods of the asymptotic theory of nonlinear oscillations, in particular the method of solution described in [1] (§13 of chapter III).



We assume that the components of the magnetic field may be expressed as

$$\begin{split} H_z &= H_0 \, \left[ 1 \, + \, \varepsilon h_z \, (r, \varphi, \, z) \right], \\ H_r &= \, \varepsilon H_0 h_r \, (r, \varphi, \, z), \ H_\varphi &= \, \varepsilon H_0 h_\varphi \, (r, \varphi, \, z) \, . \end{split}$$

We substitute these into the equations for the motion of a charge e having a mass m and put  $\omega_0 = eH_0/mc$  to get [2]

$$\begin{split} \mathbf{r}^{-} &- \mathbf{r} \mathbf{\Phi}^{\cdot 2} = -\omega_0 \left\{ \mathbf{r} \mathbf{\Phi}^{\cdot} + \varepsilon \left( \mathbf{r} \mathbf{\Phi}^{\cdot} h_z - z^{\cdot} h_{\varphi} \right) \right\}, \\ & \frac{d}{dt} \left( \mathbf{r}^2 \mathbf{\Phi}^{\cdot} \right) = \omega_0 \left\{ \mathbf{r} \mathbf{r}^{\cdot} + \varepsilon \mathbf{r} \left( z^{\cdot} h_r - r^{\cdot} h_z \right) \right\}. \end{split}$$

We put

$$\varphi' = \frac{1}{2} \omega_0 + \theta / r^2,$$
 (1)

in which  $\theta$  is a new unknown function; then (1) becomes

$$\mathbf{r}^{"} + \frac{1}{4}\omega_{0}^{2}\mathbf{r} - \frac{\theta^{2}}{r^{3}} = \varepsilon\omega_{0} \left\{ vh_{\varphi} - r\left(\frac{1}{2}\omega_{0} + \frac{\theta}{r^{2}}\right)h_{z} \right\}$$
  
$$\theta^{"} = \varepsilon\omega_{0}r\left(vh_{r} - rh_{z}\right),$$
  
$$v^{"} = \varepsilon\omega_{0} \left\{ r\left(\frac{1}{2}\omega_{0} + \frac{\theta}{r^{2}}\right)h_{r} - rh_{\varphi} \right\} \left(v \equiv z\right).$$
(2)

This shows that  $\theta$  and v are slowly varying functions of time. It is readily shown that  $\theta$  is constant at  $1/2\omega_0(\rho^2 - d^2)$  for a constant homogeneous field, in which  $\rho$  is the Larmov radius and d is the distance from the center of that orbit to the z axis. Figure 1 shows that the change in  $\varphi$  over a short time is

$$\Delta \varphi = \frac{\rho}{r} \Delta \psi \cos \alpha = \frac{\rho \left(\rho + \alpha \cos \psi\right)}{r^2} \Delta \psi.$$

We then make the substitution  $r^2 = \rho^2 + d^2 + 2 \rho d \cos \psi$  and some elementary transformations to get

$$\varphi' = \left(\frac{1}{2} + \frac{\rho^2 - d^2}{2r^2}\right) \psi' = \frac{1}{2} \left(1 + \frac{\rho^2 - d^2}{r^2}\right) (\omega_0 + P) \quad (3)$$

in which  $P^{\bullet}$  is a small quantity, since it must tend to zero along with  $\epsilon$ . Comparison of (3) with (1) gives

$$\theta = \frac{1}{2} \omega_0 \left( \rho^2 - d^2 \right) + P' \rho \left( \rho + d \cos \psi \right). \tag{4}$$

We isolate from  $\varphi$  the rapidly varying part  $\chi = \arcsin(\rho \sin \psi/r)$ and denote  $\varphi - \chi$  by  $\eta$ . Then (3) allows us to show that

$$\eta' = r^{-2} \left( \rho d' - \rho' d \right) \sin \psi,$$

so to an accuracy of the first order we have

$$\eta = \sigma + \frac{\rho' d - \rho d'}{\omega_0 c d} \ln r, \qquad (5)$$

in which  $\sigma$  is an arbitrary constant, which may, however, be taken as less than  $2\pi$ . This means that  $\varphi = \sigma + \chi(\psi)$  within the framework of the first approximation, since all terms dependent on  $\varphi$  in the equations of motion are multiplied by  $\varepsilon$ , while the second term on the right in (5) may be disregarded, provided that r does not become zero; to avoid the latter, we must rule out the case  $|\rho - d| \leq \varepsilon$ , since  $r \approx \varepsilon$  for  $|\rho - - d| \approx \varepsilon$ , while the second term on the right in (5) still remains of order  $\varepsilon \ln \varepsilon$ .

Then  $\varphi$  on the right in (2) may be replaced everywhere as follows:

$$\varphi = \sigma + \arcsin \left[ \rho \sin \psi / r \right].$$

It is often more important to know how the parameters of the motion vary with z (not with t), so we convert in (2) from differentiation with respect to t to differentiation with respect to z, denoting the latter by a prime, i.e.,  $r' = \partial r/\partial z$ , etc. Then

$$r'' = r''v^2 + r'v', |r'v'| \ll |r''v^2| (v' \sim \varepsilon).$$

Then the r'v term in the first equation of (2) should be transferred to the right, while v is replaced by the right-hand part of the third equation in (2). We also put  $\Omega(v) = \omega_0/2v$  to get in place of (2)

$$\begin{split} r'' &+ \Omega^{9}r - \left(\frac{\theta}{v}\right)^{3} \frac{1}{r^{3}} = \epsilon 2\Omega \left\{h_{\varphi} - r\left(\Omega + \frac{\theta}{vr^{3}}\right)h_{z}\right\} - \frac{r'v'}{r} \\ \theta' &= \epsilon \omega_{0}r \left(h_{r} - r'h_{z}\right), \qquad v' = \epsilon \omega_{0} \left\{r\left(\Omega + \frac{\theta}{vr^{2}}\right)h_{r} - r'h_{\varphi}\right\}. \end{split}$$
(6)

We now introduce instead of r a new function  $\tau$  related to r as follows:

$$\mathbf{r} = \sqrt{\rho^2 + d^2 + \tau} \quad \text{or} \quad \tau = 2\rho d \cos \psi, \tag{7}$$

in which in transferring to differentiation with respect to z we put

$$\psi = \int \Omega(v) dz + \Phi(z),$$

in which  $\Phi(z)$  is a slowly varying function of z. We put

$$a = 2 \rho d, \ b = \rho^2 + d^2.$$
 (8)

We substitute (7) into the first equation in (6) and differentiate with respect to z; all small quantities are then transferred to the right, and the equation is divided by  $2r^2 = 2(\tau + b)$ , which gives

$$\frac{d}{dz} (\tau^* + \Omega^2 \tau) = \frac{2}{r^2} \frac{d}{dz} [r^3 \varepsilon F (\dots)] + \frac{1}{2} (\Omega^2)' (\tau - b) - b''' - \Omega^2 b' + \frac{2}{r^2} \left(\frac{\theta^2}{v^2}\right),$$
(9)

in which  $\varepsilon F(\ldots)$  is the right part of the first equation of (6). The derivatives of  $\theta$  and v are replaced by the right-hand parts of (6), while b may

be eliminated via (8) and (4), which gives

$$\begin{split} b &= b_0 - 2 \, \frac{P \cdot \theta}{\omega_0^2} \, \Big\{ 1 + \frac{2}{b_0} \left( \frac{\theta}{\omega_0} + \frac{a}{2} \cos \psi \right) \Big\}, \\ b_0 &= \left( a^2 + 4 \, \frac{\theta^2}{\omega_0^2} \right)^{1/2} \, . \end{split}$$

As P' is small, only  $\cos \psi$  within the braces needed be differentiated;. then near resonance, where  $(\Omega^2 - \nu^2)$  is small, we get in the first approximation from (9) that

$$\frac{d}{dz} (r'' + \Omega^2 \tau) = \frac{2}{r^2} \frac{d}{dz} [\epsilon r^3 F(\ldots)] + \frac{1}{2} (\Omega^2)' (\tau - b_0) - b_0' + \frac{2}{r^2} \left(\frac{\theta^2}{v^2}\right).$$
(10)

The linearity of the left side allows us to solve the equation by the usual asymptotic methods, i.e., to put  $\tau = a \cos \psi + \varepsilon u_1(...)$  and find a and  $\Phi - \nu z$  from

$$\frac{da}{dz} = \varepsilon A_1 (a, v, \theta, \Phi), \quad \frac{d\Phi}{dz} = \Omega (v) - v + \varepsilon B_1 (a, v, \theta, \Phi), \quad (11)$$

in which  $2\pi/\nu$  is the period of the perturbation along the z axis. Equations (11) are solved together with the equations describing

the slow variation in v and  $\theta$  ([1], §13, ch. III). The third order of (11) only slightly complicates the determination of  $A_1(a, v, \theta, \Phi)$  and  $B(a, v, \theta, \Phi)$ ; there are no other significant changes in the calculation, which is performed without the assumption of paraxial motion or of the smallness of the energy of the transverse motion.

## REFERENCES

1. Yu. A. Mitropol'skii, Problems in the Asymptotic Theory of Nonstationary Oscillations [in Russian], Izd. Nauka, 1964.

2. N. S. Zinchenko, Lectures on Electron Optics [in Russian], Izd. Khar<sup>\*</sup>k. un-ta, 1961.

16 June 1966

Khar 'kov