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Here we consider the general case of the Krylov-Bogolyubov method
applied to the motion of charges in a relatively strong homogeneous
magnetic field together with a certain small perturbation, whose form
is not specified but which may be dependent on all three spatial coor-
dinates, Weuse a cylindrical coordinatesystem (z, ¢, z), withthe z-axis
parallel to the strong field. It is shown that the problem may be reduced
to solution of a quasi-harmonic equation whose coefficients are depend-
ent on two slowly varying parameters, whose variations are described by
two independent first-order equations. The three equations form a sys-
tem to which we may apply the usual methods of the asymprotic theory
of nonlinear oscillations, in particular the method of solution described
in [1] (§13 of chapter III).

We assume that the components of the magnetic field may be ex-
pressed as

HZ =H0 [1 + Ehz ("y‘P» Z)],

H, = eHoh, (r, @, 2), H, = eHohy (r, @, 7).

We substitute these into the equations for the motion of a charge e
having a mass m and put wy = eHy/me to get [2]
Pt = — oo {rQ e ({re'h, —z'h,)},
—57 (r2@7) = o {rr’ +&r (z'h, — r'hzj}‘.
We put
=100+ 0/, @

in which 6 is a new unknown function; then (1) becomes

P Yot — 02/ 18 = eay {vh, — r (Mze@o+ 8/ 1% R}
0" = swor (vh, — r'ky),
v =g {r(fro0+ 0/ h, — rho} (v = 27}, (2)

This shows that © and v are slowly varymg functions of time. It is
readily shown that © is constant at Y 2wg(p® — &) for a constant homo-
geneous field, in which p is the Larmov radius and d is the distance from
the center of that orbit to the z axis. Figure 1 shows that the change in
¢ over a short time is

Ap = Apoosym LETLSW

We then make the substitution 1> = p? + d® + 2 pd cos ¢ and some
elementary transformations to get

=(%+‘Ff";?di)lp.=‘é—(l+ g ;dz)(mo+P') 3)

in which P is a small quantity, since it must tend to zero along with
€. Comparison of (3) with (1) gives

139-140, 1967

8 = Y200 (p* — d?) + P p (0 + d cosp). 4)

We isolate from ¢ the rapidly varying part x = arcsin(p sin ¥/1)
and denote ¢ — x by 5. Then (3) allows »s to show that

1N = r%(pd — pd) sinp,
so to an accuracy of the first order we have

d o
n=s+& s, ®)

in which o is an arbitrary constant, which may, however, be taken as
less than 2. This means that ¢ = o + x(¥) within the framework of the
first approximation, since all terms dependent on ¢ in the equations
of motion are multiplied by &, while the second term on the right in
(5) may be disregarded, provided that r does not become zero; to avoid-
the latter, we must rule out the case Ip - d|<e, sincer = g for Ip -
— df # &, while the second term on the right in (8) still remains of or-
der ¢ In €.

Then ¢ on the right in (2) may be replaced everywhere as follows:

@ =0 -~ arcsin [psing/ r].

It is often more important to know how the parameters of the mo-
tion vary with z (not with t), so we convert in (2) from differentiation
with respect to t to differentiation with respect to z, denoting the lat-
ter by a prime, i.e., r’'= 8r/0z, etc. Then

T N E P PR CR )

Then the r'¥ term in the first equation of (2) should be transferred
to theright, while Visreplaced by the right-hand part of the third equation
in (2). We also put £(v) = wy/2v to get in place of (2)

e LN P

0
& = eoor (b, —r'h), v = smo{ (Q + vr2> b, — r'hq,}. (6)

We now introduce instead of r a new function 7 related tor as
follows:

r=VE+d+1 or 1=2pdcosy, (7
in which in transferring to differentiation with respect to z we put
v={emuton,
in which @(z) is a slowly varying function of z, We put
a=2pd, b= p? -+ g2 (8)
We substitute (7) into the first equation in (6) and differentiate

with respect to z; all small quantities are then transferred to the righ,
and the equation is divided by 21% = 2(r + b), which gives

d 2 d
Tz (V) = g %P ()]
1 2 102
5 (@ (e 0) 5" — 0% 5 (57 ) ©

in which €F(...) is the right part of the first equation of (6). The de-
rivatives of 6 and v arereplaced by the right-hand parts of (6), whilebmay
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be eliminated via (8) and (4), which gives

PO 2 /0 a \
b=b0—2m—02{1—|—7§<—m—;+700s¢)},

2 Y/
bo=<a2 { 4’6_) ’
T4 ok .

As P" is small, only cos ¥ within the braces needed be differentiated;.

then near resonance, where (Q2 - uz) is small, we get in the first ap-
proximation from (9) that

d 2 d
57 B =5 o= [ersF ()] +

1 2 (o
+ 3 (@ (r —bo) — b+ 5 () - (10)

The linearity of the left side allows us to solve the equation by the
usual asymptotic methods, i.e., to put 7= gcos ¥ + ey(...) and
find @ and & - vz from

d d®
d—z =eA; (a, v, 6, D), 7 = Q@) —v-+eBi(a, v, 8 D), (11

in which 2n/v is the period of the perturbation along the z axis.

Equations (11) are solved together with the equations describing
the slow variation in v and & ([1], §13, ch. III). The third order of (11)
only slightly complicates the determination of A(a,v, 6, @) and B(a,
v, 0, ®); there are no other significant changes in the calculation,
which is performed without the assumption of paraxial motion or of the
smallness of the energy of the transverse motion.
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